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RESUMO 
Os métodos estatísticos são, em sua maioria, adequados para lidar com 
conjuntos de dados formados por uma única população normal ou log-
normal, mas dados geoquímicos e geofísicos geralmente não atendem esse 
requisito. Isso se dá pela heterogeneidade na ocorrência dos objetos 
geológicos, de forma que o conjunto de dados completo pode ser formado 
pela mistura de diversas subpopulações. Especificamente, essa mistura de 
diversas subpopulações pode se referir às diferenças entre áreas 
mineralizadas e estéreis, ou diferentes fácies geoquímicas de uma unidade 
geológica, ou ainda entre áreas contaminadas e não contaminadas. Isso 
implica numa restrição no uso de estimadores estatísticos, tanto os clássicos 
ou os robustos, a menos que essas subpopulações presentes no conjunto 
possam ser identificadas e isoladas. O gráfico de probabilidade pode ser 
usado para analisar um conjunto de dados e inferir uma possível combinação 
de subpopulações, normais ou log-normais, cuja mistura pode gerá-lo. O 
aplicativo online PPlot, apresentado neste artigo, permite a construção do 
gráfico de probabilide de um conjunto de dados e a modelagem das 
subpopulações presentes nele, tanto de forma automática quanto manual. 
Após a modelagem do conjunto de dados pelo aplicativo, o usuário obterá 
resultados numéricos e gráficos dos intervalos de valores que delimitam 
cada subpopulação, bem como a média e desvio-padrão de cada uma delas. 
Para validar tanto o procedimento estatístico quanto o código de progração 
desenvolvido foram usados conjuntos de dados reais e fictícios, e um 
exemplo de uso do app é apresentado. O aplicativo foi desenvolvido 
utilizando HTML5 e Javascript e pode ser executado em qualquer navegador 
moderno e está disponível para uso livre em 
https://pplotweb.firebaseapp.com/. 
Palavras-Chave: mapeamento geoquímico, populações multimodais, 
mistura de subpopulações, isolando subpopulações, gráfico de probabilidade 
 
ABSTRACT 
Statistical methods are mostly designed to handle datasets comprising 
statistically single normal or log-normal populations, but geochemical and 
geophysical surveys usually deviate from this expectation. A reason for this 
is the heterogeneity in the occurrence of geological objects, so the complete 
dataset may correspond to multiple mixed subpopulations. Specifically, 
multiple mixed subpopulations can refer to differences between mineralized 
and barren areas, different geochemical facies of a geological unit, or 
contaminated and healthy areas. This implies a restriction on using classical 
or even robust statistical estimates, unless the underlying subpopulations can 
be extracted from the dataset. The probability plot can be used to assess a 
dataset and to infer a possible combination of subpopulations, either normal 
or log-normal, whose combination may generate it. The web-based app 
PPlot, presented in this paper, allows the plotting of the probability plot of a 
dataset and modeling the underlying subpopulations present in it, either 
automatically or manually. After modeling the dataset by the application, 
the user will obtain numerical results and plots of the range of values that 
delimit each subpopulation, as well as the mean and standard deviation for 
each of them. Computer-generated and real datasets were used to validate 
the procedure and coding, and an example of usage is presented. The app 
was developed using HTML5 and JavaScript and it runs in any modern 
browser, and is freely available in https://pplotweb.firebaseapp.com/. 
Keywords: geochemical mapping, multimodal populations, mixed 
subpopulations, isolating subpopulations, probability plot 
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1 INTRODUCTION  
 

Measures and determinations of numerous 
quantitative variables are made during 
geological mapping and geophysical or 
geochemical surveys, aiming to characterize the 
differences and contrasting zones from the 
geological background of the studied area. 
These differences can be outlined in a wide 
range of situations and scales of observation, 
from detailed mapping of crystals for studying 
their geochemical zoning under electronic 
scanning microscopy to large structures as seen 
in geochemical or geophysical regional surveys. 

Today, with the analytical facilities and the 
low cost of determining a wide range of 
chemical elements and compounds, as well as 
geophysical measurements, exploration 
databases have become increasingly larger and 
more complex. Accompanying this complexity, 
the availability of data processing computer 
applications and packages has disseminated 
sophisticated statistical techniques e.g., 
discriminant, cluster, factor, and principal 
component analysis. Many researchers adopt 
these sophisticated techniques surpassing a 
previous and fundamental step of recognizing 
their variables by applying simple but powerful 
techniques, housed in the field of exploratory 
data analysis (EDA). Further, it is important to 
consider that in the real world, advanced 
techniques for processing geochemical or 
geophysical data are not in the domain or 
comprehension of most exploration geologists, 
being restricted to the academic environment or 
geologists with advanced statistical expertise. 
During the handling of geochemical data, it is a 

very common procedure that stratification of 
the database is made using as reference the 
domains or units defined in the geological map. 
This a priori selection of allegedly 
homogeneous sets can lead to misconceptions 
that may have undesirable impacts on the 
results. For this reason, it is necessary to delimit 
statistically homogeneous domains in the 
geochemical and geophysical datasets, which 
may or may not coincide with the geological 
map. 

This paper aims to introduce the free and 
interactive web application PPlot, available at 
https://pplotweb.firebaseapp.com/. It is a very 
simple to use but highly effective data analysis 
tool in the data handling for delimitation of 
statistically homogeneous domains. This is 
achieved by partioning  naturally mixed 
subpopulations in geochemical and geophysical 
databases using the method described by 
Sinclair (1974a). Thus, it is possible to divide a 
dataset into subsets with the necessary 
statistical support, avoiding the adoption of 
arbitrary assumptions. 

It is clear that the technique of isolating 
mixed subpopulations, like most of those that 
compose the classical and robust statistics 
toolbox, does not consider the spatial 
component of the sampling stations or the 
neighborhood between points. The construction 
of satisfactory and reliable geochemical maps 
will be achieved with the application of the 
results obtained with the separation of the 
subpopulations and their respective statistical 
estimates. 

 
2 BACKGROUND OF THE TECHNIQUE 

 
Pearson (1894) discussed the meaning of 

symmetric and asymmetric distribution curves 
in natural data. He stated that curves whose 
shape was very close to the symmetry and 
normal curves constituted the majority of cases. 
In some cases, however, he observed a well-
marked deviation from the normal curve. This 
asymmetry could happen when the units 
grouped in the dataset under analysis were not 
homogeneous. Thus, he studied not only the 
process of transforming an abnormal frequency 
curve into a normal curve but also the problem 
of “Given an asymmetrical frequency-curve to 
break it up, if possible, into two component 
probability-curves, or into two normal curves” 
(p. 76). The mathematical solution was so 
complex that he stated, “the majority [of the 

relations] lead to an exponential equation, the 
solution of which seems more beyond the wit of 
man than that of a numerical equation even of 
the ninth order” (p. 75-76). 

Seeking practical solutions that were 
applicable to concrete problems, Hazen (1913) 
first used probability plots to analyze water flow 
in rivers; Rissik (1942), Doust and Josephs 
(1941) used them in engineering applications 
and in the industry. These authors, however, 
used probability plots only to analyze unimodal 
curves, making no mention of their application 
to the analysis and break-up in the case of bi- 
and multimodal distributions (HARDING, 
1949). 

To our best knowledge, Harding (1949) was 
the pioneer in applying the “Hazen’s 
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probability graph paper” for handling complex 
data sets. He used biological data, justifying it 
as follows: “He [the biologist] has long been 
aware that the mean and standard deviation of 
populations he is confronted with are often of 
little biological significance; because these 
populations are compounded of individuals 
belonging to the two sexes, to different species, 
or to different age-groups, and are therefore 
necessarily bimodal or polymodal in 
character.” (p. 142). The technique applied by 
Harding (1949) gave the direction to the 
subsequent authors who perfected the graphical 
handling of uni-, bi- and multimodal 
distributions, mostly of geochemical datasets. 

Tennant and White (1959) examined the 
behavior of geochemical data using a 
logarithmic probability graph paper. In most 
cases the results suggested that more than one 
distribution was present. On logarithmic 
probability graph paper, a single log-normal 
distribution gives a single straight line, however 
on these geochemical datasets, the expected 
"straight" lines sometimes showed breaks. The 
breaks suggest that more than one log-normal 
distribution occurs in the data. The authors 
assumed that the presence of two straight lines 
with different slopes indicates two distributions 
mixed in the geochemical dataset, each 
representing different geochemical environ-
ments. Following these studies, Lepeltier 
(1969) perfected the method and, considering 
that in geochemical data there is a lack of 
precision of the lowest values and the 
importance of the highest ones for the 
determination of anomalies, for practical 
reasons, he suggested: “to cumulate the 
frequencies from the highest to the lowest 
values" (p. 542). Having isolated the straight 
lines representing each subpopulation, he could 
graphically estimate some basic parameters. 

Subsequently, Parslow (1974) and Coppens 
(1977) also published articles on this 
partitioning method, considering more closely 
multimodal curves, log-normal datasets, and 
how the range of each subpopulation should be 
determined. In successive articles, Sinclair 
(1972, 1974a, 1974b, 1976, 1986, and 1991), 
proposed a substantial improvement in the 
technique presented by previous authors for 
plotting and interpreting probability plots. The 
main innovation is to have transformed it into a 

generic technique, making it possible to be 
applied to datasets that follow uni-, bi, or 
multimodal distribution curves. This 
improvement extended the concept of 
representativeness of geochemical data to much 
more than the background and threshold of a 
bimodal curve. It showed that multimodal 
curves, which are very common in geochemical 
data of regional surveys, reflect the diversity of 
environments that are covered by these large-
scale works. From the modeling of a complex 
multimodal curve, when the several straight 
lines are drawn, each will represent a 
geochemical-statistical domain. Since a straight 
line graphically represents each domain, the 
domain is a normal and unimodal 
subpopulation. The subpopulations allow for 
establishing background and anomaly levels for 
each domain and graphically representing them 
on geochemical maps. The technique is still 
used in recent research, as can be seen in 
Seyedrahimi-Niaraq and Hekmatnejad (2020), 
Cabassi et al. (2021), Moradpouri and Hayati 
(2021), Giustini et al. (2022) and Apollaro et al. 
(2022). 

Two computer programs were developed to 
model probability plots following Sinclair’s 
proposals: ProbPlot by Stanley (1987) and P-
Rez by Bentzen and Sinclair (1993). 
Unfortunately, both run under MS-DOS and do 
not have adequate graphical outputs. A more 
recent approach was included in the software 
SoilExp (BOUDOIRE et al., 2020), however, it 
is limited to a specific kind of data from soil 
surveys. Thus, the lack of an application aimed 
at modeling probability plots, executable in a 
modern environment with interactivity and 
good graphic output, led the authors of this 
article to design and develop the PPlot app. For 
this, the authors based mainly on the technique 
proposed by Sinclair (1972, 1974a, 1974b, 
1976, 1986 and 1991), with some 
modifications, and took as reference the above 
mentioned computer programs. Additionally, 
Reimann et al. (2005) point out that searching 
for the inflection points is “subjective and 
experience plays a major role”, which may have 
hindered a wide use of the method. Integrated 
with the app, we present an automated method 
to determine the inflection points and obtain the 
best-fitting modeled curve based in an 
interactive error minimization algorithm. 
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3 CONCEPTUAL REVIEW 
 

The classical techniques for statistical data 
processing have been established for a very 
particular type of data distribution that is 
represented by a unimodal symmetric curve, 
also called the Gaussian curve, or bell-shaped 

distribution (Figures 1 and 2). Thus, the 
calculation of statistical estimates, e.g., mean, 
variance, and standard deviation, is based on 
this distribution model. 

 
 

 
Figure 1. Distribution curve of a normal unimodal dataset (s – standard deviation). 

 

 
Figure 2. Probability plot of a normal unimodal dataset (s – standard deviation;	�̅�	– mean). 

 
From a misunderstanding of a Hawkes and 

Webb (1962) statement, “For a single 
population of values that are distributed 
symmetrically (either normally or 
lognormally), the threshold for that material 
may be conventionally taken as the mean plus 
twice the standard deviation” (p. 30), an 
equivocated criterion to establishing geo-
chemical anomalies was for long time adopted. 
It is clear that what the authors stated is valid 
only for a single population. Still, it was 
misunderstood and applied to any geochemical 
dataset regardless of whether it is uni-, bi-, or 

multimodal. Then, based on this misconception, 
geochemical anomalies were considered at 
three hierarchical levels: 3rd order anomaly 
(mean + 1 standard deviation), 2nd order 
anomaly (mean + 2 standard deviations) and 1st 
order anomaly (mean + 3 standard deviations). 
Since the estimates �̅� and s are easily calculated, 
this mistaken criterion for establishing three 
levels of anomalies spread out (REIMANN et 
al., 2005). 

An additional complication that has been 
exhaustively demonstrated in the geochemical 
literature since the pioneering works of Ahrens 
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(1953, 1957), Vistelius (1960), and Matheron 
(1962) is that geochemical data, especially of 
minor and trace elements, do not follow a 
normal distribution. Therefore their histograms 
and distribution curves are asymmetric. The 
positive skewness makes it clear that 
geochemical datasets contain a large proportion 
of low values and a scarcity of high ones. In this 

case, the transformation of the original values to 
their logarithms usually promotes an acceptable 
normalization of the distribution curve (Figures 
3 and 4). Thus, having the distribution 
normalized, and if it is unimodal, it is possible 
to calculate the statistical estimates of the 
logarithms of values such as mean, variance, 
and standard deviation.  

 

 
Figure 3. Histogram and distribution curve of a unimodal dataset with positive skew. 

 
Figure 4.  Histogram and distribution curve of a normalized dataset by using 

                             the logarithm transformation on the original values. 
 

Moreover, unimodal distributions constitute 
very particular situations for any database 
describing any phenomena of nature, whether 
biotic or abiotic and geochemical in our case. 
This is because geochemical datasets represent 
areas that are made up of varied geological 
environments with different geochemical 
signals. Thus, it is impossible to expect the 
geochemical response of one environment to be 
the same as another. 

To better exemplify the need to isolate 
subpopulations in a dataset, let us consider a 
hypothetical case. In a geochemical survey 

carried out over an area with two very different 
geological environments, one of the elements in 
the dataset is able to clearly distinguish the two 
units. The histograms undoubtedly show this: 
unit B, with a low-content geochemical signal, 
and unit A, with a more intense geochemical 
response (Figure 5). However, a histogram 
constructed with the complete dataset received 
from the lab will have the structure presented in 
Figure 6. It looks like a histogram with a subtle 
positive skew, highlighting a major mode 
representing 42.74% of the data, and a much 
subtler secondary mode with 12.39% of the 
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data. Due to the mixture in this dataset, it is 
impossible to discriminate each subpopulation. 
If any statistical estimate such as mean or 
standard deviation were calculated with the 
A+B dataset, it is clear that they would not have  

any significance. When this hypothetical 
dataset is plotted on a probability plot, the 
resulting curve shows the trace of a sigmoid, 
composed of two smoother sloping segments, 
slightly deviating from a straight line (Figure 6). 

 
 

 
 

 

 
Figure 5. Histogram of hypothetical data from a distinguishing element 

                                 characterizing the geological units A (A) and B (B). 
 
 
 

 
Figure 6. Histogram of hypothetical data from a distinguishing element as received 

                        from the lab and its corresponding sigmoidal-shaped probability plot. 
 
 

A more complex dataset containing the 
contrasted geochemical signal from three 
geological units will be expressed in a three-
mode histogram, representing the mixture of the 
subpopulations A, B, and C (Figure 7). The 

corresponding probability plot will have a 
complex line with three gentle slope segments, 
connected by two nearly vertical ones (Figure 
7). Each gently sloping segment represents one 
mode of the histogram, i.e., a subpopulation. 
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Figure 7. Distribution curve (A) and probability plot (B) of a dataset with three modes (multimodal). 
 

In even more complex situations where the 
geochemical database represents great 
geological and geochemical diversity, the 
probability plot may be multimodal, showing 
several subpopulations. Thus, it seems clear that 
isolating mixed subpopulations in a 
geochemical dataset is a fundamental step in the 
correct interpretation of the data, as each 
subpopulation has a specific meaning and can 
represent different situations or environments, 

such as lithologies and/or facies, orebodies and 
host rocks, or even low-grade ore zone and high 
grade orebody. After partitioning the dataset, it 
is essential to analyze the spatial distribution of 
the modeled subpopulations (REIMANN et al., 
2005) plotting the classified samples on a map, 
and associate it to other available data from the 
studied area (elevation, hydrographic network, 
lithologies, geological structures, geophysics, 
etc.). 

 
4 MATERIALS AND METHODS 

Probability plots are very efficient tools for 
delimiting statistically homogeneous domains 
represented by subpopulations, mixed in a 
geochemical dataset. They are easy-to-
construct diagrams sensitive to deviations from 
normality and facilitate the identification and 
characterization of subpopulations, besides 
providing reliable information for the 
interpretation of geochemical data. The 
technique of manually constructing and 
modeling a probability plot has been 
exhaustively demonstrated by Sinclair (1972, 
1974a, 1974b, 1976, 1986 and 1991). 

The web app PPlot was developed using 
JavaScript and HTML5 to create a userfriendly 
and robust data analysis tool for partitioning 
subpopulations using a probability plot that 
delivers good graphical outputs and can be used 
in any modern web browser. Besides the core 
functions of JavaScript and HTML5, several 
JavaScript libraries were used, as follows: 

 
• jQuery: manipulation of HTML elements 

and dependency of the jExcel library 
(source: https://github.com/jquery/jquery); 

• jExcel: preparation of editable tables with 
an interface similar to the software 
“Microsoft Office Excel”® (source: 
https://github.com/paulhodel/jexcel); 

• Statistics: utilities for statistical data 
analysis (source: 
https://github.com/thisancog/statistics.js) 

• D3: creation of data-driven elements (such 
as plots) (source: https://github.com/d3/d3) 

• svgsaver: export of the generated drawing 
for download in SVG (vector) and PNG 
(raster) file   formats (source: 
https://github.com/Hypercubed/svgsaver). 
 
The following description of the internal 

mathematical calculations are presented for 
validation of the method, but the end user is 
only  exposed  to the interface presented in 
section 5. To demonstrate the process, we will 
consider a sample a with n elements (a1, a2, …, 
ai, …, an) composed of m subpopulations (S1, S2, 
…, Sj, …, Sm) and (m – 1) inflection points. 
Contrarily than using a ready-to-use printed 
probability paper to plot the data as in the 
classical method, we need to calculate and 
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devise our own virtual probability “paper” 
(Figure 8). To do this, the input data is sorted in 
descending order (LEPELTIER, 1969) and its 

approximate percentile (Eq. 1) and the inverse 
of the cumulative normal distribution function 
(Eq. 2) are calculated. 

 

𝑝! =
!"	!"
$"	#$	

  Eq. 1 

𝑧 = 𝜙"%(𝑝) = 𝑝𝑟𝑜𝑏𝑖𝑡(𝑝)  Eq. 2  
 
where:  pi = approximated probability; 
 i = position of the data value in the ordered list; 
 n = number of observations; 
 z = observed values; 
 φ-1 and probit = inverse of the cumulative normal distribution function. 
 
 
 
 

 
Figure 8. Probability plot with the elements and notation used in this section (a – sample; b – modeled sample; 
p – inflexion point; S – subpopulation; f – proportion of the subpopulation S; µ – the mean of subpopulation S). 

 
 
 

The probit represents “how many standard 
deviations from the mean a given cumulative 
probability is spread” (statitics.js Docu-
mentation) since the data is standardized and 
can be plotted in a linear scale in the abscissa 
against the data values in the ordinate to 
generate the probability plot. Since the probit 
values have no direct meaning to the geoscience 
researcher, the values are replaced with their 
respective quantiles (Figure 9). 

To begin the partitioning process, we must 
first determine how many inflection points are 
present in the probability plot and in which 
position they are. When selecting the inflection 
points graphically, their value is read on the 
abscissa and converted to percentile using the 
cumulative normal distribution function (Eq. 3) 
for N(0,1). At the same time, the proportion of 
each subpopulation in the mixture is calculated 
by Eq. 4. 
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𝑝& = 𝜙.𝑧&/	 Eq. 3 

𝑓& =	2
	𝑝%	, 𝑗 = 1																									
𝑝& − 𝑝&"%, 1 < 𝑗 < 𝑚	
1 −	𝑝'"%, 𝑗 = 𝑚									

			 Eq. 4  

where: zj = the observed value read on the abscissa for the j inflection point; 
                      pj = the probability for the j inflection point; 
                      fj = the proportion of the Sj subpopulation in the sample. 

 
 

 
 
Figure 9. Relationship between probit values and quantiles. Probit(50) = 0, so the y-axis in the probability plot (Figure 
8) is displaced from the origin of the x-axis (source: https://en.wikipedia.org/wiki/Probit#/media/File:Probit_plot.png) 
 
 

Then, the mean (Eq. 5) and standard 
deviation (Eq. 6) of each subpopulation is  

calculated using as approximation the data 
values that are respective of the inflection such 
as 

 
𝜇& = �̅� :𝑎(%&# , … , 𝑎(%= Eq. 5 

𝜎& = 𝑠 :𝑎(%&# , … , 𝑎(%= Eq. 6 
 

where: µj = the mean of subpopulation Sj; 
                                                  σj = the standard deviation of subpopulation Sj. 
 

In the probability plot, a normal 
distribution can be plotted as a linear function 
where the mean is the constant term and the 

standard deviation is the slope (Eq. 7 and Figure 
8). 

 
𝑆& = 𝑓(𝑧) = 	𝜇&−𝜎& 	𝑧 Eq. 7 

After subpopulations are defined, a sample b 
resulting from this mixture must be calculated 
considering the fj proportions, made up of n 
elements (b1, b2, … bi, …, bn). Therefore, for 
each element ai of the original sample we 

calculate the corresponding bi element of 
sample b, as the weighted mean of the expected 
normal distribution value for each 
subpopulation. This is achieved using Eq. 8. 
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𝑝𝑟𝑜𝑏𝑖𝑡.𝑝)'/ = 𝑝𝑟𝑜𝑏𝑖𝑡 A1 − ∑ A𝜙 A

*'"+%
,%

C × 𝑓&C'
&-% C  Eq. 8 

 
The fit of the points generated by the 

calculated sample b in regard to the original 
sample a can be evaluated graphically or by the 

error coefficient E defined by Eq. 9. The lower 
the value of E the more similar sample b is to 
the original sample a. 

 

𝐸 =
∑ /(01)!23(('4"(01)!23()'4/
*
'+#

$
  Eq. 9  

The limits of each subpopulation are defined 
by the mean plus or minus two standard 
deviations, which in a normal distribution 
account for 95.45% of the data, or the limits of 

the neighboring subpopulation, choosing the 
most restrictive of the two, as showed in Eq. 10 
and Eq. 11. 

 
𝑆&(𝑚𝑖𝑛) = 𝑚𝑎𝑥G.𝜇& − 2𝜎&/, 𝑆&"%(𝑚𝑎𝑥)I Eq. 10 
𝑆&(𝑚𝑎𝑥) = 𝑚𝑖𝑛G.𝜇& + 2𝜎&/, 𝑆&5%(𝑚𝑖𝑛)I Eq. 11 

 
5 USAGE, OPERATION, AND FUNCTIONALITY 
 
5.1 DATA INPUT 

Data should be inputted as a table where the 
results (e.g. geochemical samples or 
geophysical signal) are ordered in rows. More 
than one variable can be inputted 
simultaneously, and each variable should be 
placed in a column, as is usual in these datasets. 
A label, such as the chemical element name, can 
be placed on the first line. Only numbers should 
be present in the table, but if values under the 
detection limit are present (e.g. < 0.1, 
commonly reported by analytical labs), these 
can be automatically transformed to half of their 
value. Additionally, a missing data code can be 
inputted to automatically exclude such results 
from the analysis. Since geochemical databases 
usually contain sensitive and confidential 
information, it is important to point out that all 

processing is done locally on the user browser, 
and no inputted data is transferred over the 
internet or stored in the server. 

In sequence, the app displays the selected 
variable’s probability plot, histogram, and box 
plot. The histogram is initially constructed with 
the number of bins defined by k (Eq. 16), but 
this can be interactively altered to any value 
arbitrarily selected by the user. The probability 
plot is initially presented with all the original 
data points, but the user may choose to use the 
log-transformed values, checking the 
corresponding check box. Furthermore, the user 
may also choose to use the data intervals from 
the histogram instead of the original data points, 
which may be useful when the dataset is very 
large and/or noisy. 

 

𝑘 = *('*7)"*('!$)
#
$×:

  Eq. 16 

5.2 GRAPHICAL ANALYSIS 

The analysis may be carried out manually by 
the user or automatically by the internal routines 
of the app. To begin the manual analysis, the 
user must first choose how many 
subpopulations will be partitioned in the 
dataset. This is done visually by the user, who 
identifies the number of inflection points in the 
probability curve. Clicking over the plot creates 
a vertical line which marks the inflection point, 
and the first estimate of the corresponding 
subpopulations are calculated and plotted as 
colored lines while the points of the modelled 
sample are plotted as black points. All 

generated lines can be graphically moved, and 
the model is dynamically recalculated on 
change. The inflection line can be dragged 
sideways, while the subpopulation lines can be 
dragged up- and downwards (to alter the mean 
value, µ) or, while holding the Ctrl/Command 
key, tilted (to alter the standard deviation, σ) 
(Figure 10). The values of p (probability) for 
each inflection and the values of µ and σ for 
each subpopulation are displayed in an editable 
table. Any value changed in the table will also 
be automatically updated in the plots. 
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Figure 10. Probability plot elements with arrows indicating all possible user interactions with the plot (p – 
inflection point; µ – mean; σ – standard deviation). 
 
 

The objective is to vary these parameters 
until the modeled population B is as closest as 
possible to the original population A. The fit of 
the curve can be assessed visually or by the 
calculated error value. The fine tuning of the 
inflection point placement and of the mean and 
standard deviation values (optimization) can be 
done mathematically by the app using a Penalty 
Function Method that uses a sensitivity matrix 
(FRISWELL; MOTIERSHEAD, 1995), which 
interactively alters all parameters 
simultaneously in order to identify the best 
possible fit of the modelled population in regard 
to the original dataset, that is, the one with the 
lowest error. 

Besides the manual analysis, the user can 
initiate an analysis by clicking the “automatic 
analysis” button. It is based on the principle that 
the lowest error value will be obtained when the 
correct number and position of inflection points 
are placed in the plot, as well as the mean and 
standard deviation for each subpopulation are 
fine tuned. The routine begins with placing a 
single inflection in p = 1, calculating the 
corresponding error, and repeating the 
operation up to p = 99 in 1 percentile intervals. 
The percentile with the minimum obtained error 
is selected and the first inflection point is fixed. 
Subsequently, the routine continues by placing 
a  second  inflection  in p = 1 and following the 
same procedure as before, selecting the 
percentile corresponding to the lowest error 

value. After each selection of a new inflection 
point, the model is optimized. The routine stops 
when adding a new inflection reduces the error 
value by less than 10%. The determined 
inflection points are evaluated, all those closer 
to probit(p) = ± 0.15 of each other are merged, 
and a last optimization is run. The result 
obtained by the automatic analysis should 
represent the best fit of the curve using the least 
possible number of inflection points. Still, the 
user must evaluate the geological and statistical 
meaning of the generated subpopulations. The 
user can interact with the result in the same way 
as described in the manual analysis. 

After the user is satisfied with the obtained 
model, a table displays the range for each 
subpopulation according to the criteria 
presented in section 4. If there is an overlap, the 
table displays this range using the term 
“mixture”. Additionally, the box plot of the 
subpopulations is plotted, and the ranges are 
overlaid in the histogram (Figure 11). The 
resulting plots can be saved as an image vector 
file format (SVG). Furthermore, the user can 
save the PPlot project as a local file (JSON 
format) and later reopen it exactly as it was 
saved with all the data, modeling, and plots. 
Supplementary data 1 contains a JSON file with 
the data and modeled probability plots 
presented in the next section, that can be opened 
in PPlot. 
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Figure 11. Resulting table and respective histogram and box-plots. 

 
6 TESTING THE APPLICATION 
 
6.1 TESTING THE CODE 
 

First of all, to test that the written code 
computes exactly the mathematical 
development presented in section 4, we will use 
a computer-generated sample (n = 300). The 
dataset inputted into PPlot is composed by the 
mixture of three normal distributions N(�̅�,s): 
N1(150,5) (n = 50); N2(100,15) (n = 100), and 
N3(50,10) (n = 50) (see supplementary data 2). 

The numerical values for the inflection points, 
means, and standard deviations were 
numerically informed, generating the 
probability plot (Figure 12) and corresponding 
table of ranges (Table 1). As can be assessed 
graphically and by the obtained error values 
(0.77), the fit of the modeled sample with the 
original sample is almost perfect, as expected.

 

6.2 TESTING THE PARTITIONING IN A GENERATED DATASET 
 

A computer-generated sample a (n = 250) 
composed by the mixture of two normal 
populations (v, n = 100 and w, n = 150) with 
some associated randomness, so that v(�̅�,s) = 
(100.81, 5.38) and w(�̅�,s) = (50.10, 9.77), was 
inputted into PPlot (see supplementary data 2). 
The “automatic evaluation” option was used, 
which identified one inflection point (0.400) to 

obtain the smallest error possible (E = 2.12). As 
can be seen by the fit of the curve in Figure 13 
and the obtained values for each subpopulation 
in Table 2, the partitioning was very efficient in 
estimating the parameters for the two 
subpopulations. Classifying the dataset by the 
obtained ranges, the method correctly identified 
98% of v and 94% of w. 

 

6.3 TESTING THE PARTITIONING IN A REAL GEOCHEMICAL DATASET 
 
A real multi-elemental dataset of a soil grid 

(n = 134) sampled over an alkaline intrusion 
(BRUMATTI et al., 2015) was inputted into 
PPlot (see supplementary data 2). We analyzed 
the probability plot for Ce and Ni, choosing a 

logarithmic distribution, using the automatic 
inflection point, and graphically adjusting the 
parameters to obtain the minimum error value 
(Figure 14). In both cases, two subpopulations 
were identified and adequately separated (Table 
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3). The obtained ranges were plotted on a map 
to analyze their spatial distribution and compare 
it to the geological map (Figure 15). In both 
cases, the subpopulations formed well-
delineated groupings. For Ce, the higher values 
of S1(Ce) delimit the carbonatite unit. In 

contrast, for Ni, the higher S1(Ni) values 
spatially correlate well with the olivine 
clinopyroxenite and nepheline syenite units, so 
the statistically defined subpopulations are 
geologically coherent.  

 

 

  
Figure 12. Probability plot and histogram for computer-generated sample (n = 300) composed by the mixture of 
three normal distributions N(150,5) (n = 50), N(100,15) (n = 100), and N(50,10) (n = 50), in green, and respective 
distribution generated by the numerical input of the inflection points, means and standard deviations, in black. 

 
 

Table 1. Inputted parameters for generating the modeled 
distribution shown in Figure 12, and obtained values for “Error” 
and “Range”. 

 Parameters 
 

Range 
S1 µ1 = 150; σ1 = 5; f1 = 25%; 140 - 160 
S2 µ2 = 100; σ2 = 15; f2 = 50%; 70 - 130 
S3 µ3 = 50; σ3 = 10; f3 = 25%; 30 - 70 
p1 0.25 - 
p2 0.75 - 

Error 0.77 - 
 
 
                        Table 2. Obtained values for the modeled distribution shown in Figure 13. 

 Parameters Range 
S1 µ1 = 101; σ1 = 5.375; f1 = 40.00%; 90.06 - 112 
S2 µ2 = 50.10; σ2 = 9.772; f2 = 60.00%; 30.56 - 69.65 
p1 0.400 - 

Error 2.12 - 
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Figure 13. Probability plot and histogram for computer-generated sample (n = 250) composed by the mixture of 
two normal populations with some associated randomness, in green, and respective modeled distribution 
generated by the automatic definition of the inflection point, mean, and standard deviation values, in black. 

 
 
 
 
                             Table 3. Obtained values for the modeled distribution shown in Figure 14. 

  Parameters Range 

Ce 

S1 µ1 = 2292; σ1 = 3125; f1 = 13.75%; 504 - 12802 
S1 + S2 (overlap) 411 - 504 

S2 µ2 = 149; σ2 = 125; f2 = 86.25%; 44 - 411 
p1 0.1375 - 

Error 4.95 - 

Ni 

S1 µ1 = 449; σ1 = 480; f1 = 44.21%; 105 - 1921 
S2 µ2 = 39; σ2 = 17; f2 =  55.79%; 19 - 81 
p1 0.4421 - 

Error 5.6 - 



Geochimica Brasiliensis 37:e-23002, 2023 
 

15 

  

  
Figure 14. Probability plot and histogram for Ce (A and B) and Ni (C and D) of a multi-elemental dataset of a soil 
grid (n = 134) sampled over an alkaline intrusion (BRUMATTI et al., 2015). The original data is in green, and the 
respective modeled distribution is in black. 
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Figure 15. Sampling sites classified by the modeled subpopulations and underlying geology (UTM zone 22S) 
(BRUMATTI et al., 2015). S1 – subpopulation 1; S2 – subpopulation 2; NC – not classified. 
 
 
7 FINAL REMARKS 
 

Geochemical and geophysical datasets are 
often composed of a mixture of several 
statistical subpopulations. The presented 
application is an easy-to-use yet powerful tool 
for partitioning normal subpopulations from a 
dataset. Besides that, it also generates a 
dashboard of the main aspects an exploration 
geologist usually needs to assess when doing 
univariate analysis: the histogram, the box-plot, 
and the probability plot. This partitioning 
technique, while effective, had its usage 
hindered nowadays mainly due to software 
limitations, which were not updated to current 
user systems. Partitioning of the subpopulations 
may reveal geochemical anomalies, map 
geochemical domains or classify the data into 
subsets which will then undergo classical 
statistical analysis. 

Like all data analysis techniques, this 
method has many advantages, but has its 

limitations. For example, the cumulative 
probability plot of the geochemical data set is 
usually very smooth and therefore, the positions 
of the inflection points are not always evident. 
Sometimes identification is subjective, and 
experience plays an important role. To surpass 
this limitation, a feature designed for automatic 
identification of the inflection points, based on 
multiple iterations, has been included on the 
app. Another limitation of the technique is the 
inability to separate values positioned in the 
overlapping zones of bi- or multimodal 
subpopulations. However, while generating 
geochemical maps, the overlapping zone 
samples can be identified as belonging to the 
mixed zone between subpopulations. This is a 
very straightforward technique that can be 
easily applied and understood by exploration 
geologists, creating practical results and adding 
value to the analysis and interpretation of 
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results. It is important to emphasize that a good 
input database is essential to obtain good results 
when partitioning subpopulations, as well as 
performing any statistical tests in PPlot or any 
other software. Regarding geochemical 
samples, representativeness of the sampling 
environment is critical to generate good quality 
data that will subsequently generate a reliable 
definition of subpopulations that can be 
interpreted as geochemical signatures. 

PPlot runs under any modern web browser, 
including mobile devices. It can be used by any 

geology student, researcher, or practitioner 
without any other specific or additional 
software installation. It has a graphical interface 
that, besides its primary intended use, also 
allows a didactic approach to the method, so 
that professors can use it to demonstrate the 
relationships between the three plots and how 
subpopulations are represented on it. 
Furthermore, although it has been designed 
with a mainly geochemical perspective, the 
technique can be used on any dataset composed 
of several normal subpopulations.  
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